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Abstract Transport properties of the multicomponent quantum many-body systems obeying 
Haldane’s fractional exclusion statistics are studied in one dimension. By computing the finite- 
size SpeCtNm under twisted boundary conditions, we explicitly express the mnductivity and 
conductance in terms of statistical interactions. Thmugh this analysis, the effective charge and 
effective mass for collective excitations are determined. We apply the results for 11,’ quantum 
systems as well as for correlated electron sysfems. 

1. Introduction 

In low-dimensional quantum systems, excitations are described by quasiparticles carrying 
fractional quantum numbers. One of the well known examples is the fractional quantum 
Hall effect (FQHE) [I], where quasiparticles are classified by the fractional charge and 
statistics. In these theories, fractional quantum numbers arise from exchange properties.of 
the wavefunction. Recently, Haldane [2] proposed a new concept of fractional statistics 
based on the stabcounting of many-body systems, which is a generalization of the 
Pauli exclusion principle. We will refer to this as fractional exclusion statistics. The 
thermodynamic properties have already been investigated in detail 1361. For example, 
Wu and Bernard [4] formulated thermodynamic equations, and showed that the statistical 
interaction is related to the two-body phase shift for Bethe-ansatz solvable models. Their 
method was generalized to multicomponent systems [6], and low-energy critical properties 
were investigated. 

In this paper, we study transport properties of multicomponent quantum systems 
with exclusion statistics in one dimension. Transport coefficients are closely related to 
wavefunctions, and may usually be calculated in the Green function formalism. Since we 
have only statistics between particles without explicit wavefunctions, it is not trivial to 
study such properties directly from the definition of statistics [7]. We therefore use a trick 
to avoid this difficulty. Namely, by applying the idea of twisted boundary conditions for the 
finite-size spectrum, we calculate the conductivity and the conductance in terms of statistical 
interactions. We then determine the effective charge and the effective mass, and show how 
these quantities are related to the exclusion statistics. 

After a brief introduction of exclusion statistics in section 2, we compute the finite-size 
corrections due to the vector potential for multicomponent quantum systems in section 3. In 
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section 4 we then obtain the conductivity and the conductance, and determine the effective 
charge and the effective mass. In section 5 we apply the results for several interesting 
quantum systems. Section 6 is devoted to a summary and discussions. 

T Fukui and N Kawakami 

2. Exclusion statistics 

Let us start with a brief introduction for fundamental properties of exclusion statistics [2,4]. 
It is based on counting the change of the dimension of the one-pmicle Hilbert space when 
a particle is added to the system, which is explicitly formulated as 

where D,(k,) and N,(k,) are, roughly speaking, the numbers of unoccupied (hole) and 
occupied (particle) states specified by the internal quantum numbers a = (1,2, . . . , M) 
and corresponding momenta kc. The matrix g,j, which is called the statistical interaction, 
describes the correlation effects between particles. See [2] for a more rigorous definition. 
The simple cases g,&, - k b )  = g6@8&K8 with g = 1 and g = 0 correspond to free 
fermions and free bosons, respectively, and for the general fractional value g, we call it 
ideal fractional exclusion statistics. 

The statistical interactions should be independent of Nu [2], and hence equation (2.1) 
results in 

We assume that the integral constants are given by D:(k,) = DoS,l or Do, which are 
referred to as hierarchical and symmetric bases, respectively. Such bases were originally 
used for a classification of the FQHE [8,9]. Also, in one-dimensional quantum systems the 
hierarchical basis serves as a natural basis for the Bethe-ansatz solution [IO], 

In the thermodynamic limit, we introduce the dimibution functions for particles and 
holes: 

where Do is proportional to the system size L such that Do = L/2r under periodic boundary 
conditions 141. The bare charge for each elementary excitation is defined by [6] 

D: t, = 5. 
Consequently, equation (2.2) can be written as 

The energy of the system is assumed to take the form [4]: 

(2.4) 

(2.5) 

with the bare energy function cz(k).  Note that many-body effects due to the exclusion 
statistics are incorporated in the distribution function p’(k). 
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The thermodynamic equations are generally obtained in a set of coupled nonlinear 
equations at finite temperaturest. Here we restrict ourselves to the zero-temperature case 
which is sufficient for the following calculation. At zero temperature without external fields, 
M species of elementary excitations are specified hy the dressed energy function e,(k). 
The 'Fermi level' Q. for each excitation is determined by the conditions, ce(k,) < 0 for 
Ikil < Q, and e,(k,) z 0 for IkaI > e,, provided that the energy dispersion may be 
symmetric around the origin k, = 0. Equation (2.5) then reduces to the following integral 
equations supplemented by those for the dressed energy 

The total energy is now expressed by the dressed energy as 

where p is the chemical potential and n, is the density of charged particles. These equations 
can describe the static properties at zero temperature. 

3. Finite-size corrections due to static vector potential 

We now turn to the computation of the conductivity in pure systems without randomness, 
which can be calculated with the response to the vector potential. Consider the ring system 
at T = 0 threaded by the magnetic flux, which gives rise to a static vector potential 
along the ring [ll].  The effect of the vector potential is incorporated in twisted boundary 
conditions [12,13]. Therefore, the energy increment quadratically prop&ional to A can be 
calculated through the analysis of the finite-size spectrum, which directly gives the charge 
stiffness and hence the conductivity. By observing that the basic equations (2.7) and (2.8) 
have the same structure as the Bethe-ansatz equations, we can apply the elegant techniques 
of the dressed charge matrix developed for integrable models [14], and generalize the 
calculation of the conductivity [12,13] to multicomponent cases. 

Before proceeding with the finite-size corrections, we give here 'a formal solution to 
(2.7) in the absence of external fields, which is necessary for the following discussions. To 
this end, let us first introduce the functions 114,151 

t The thermodynamics of system with exclusion statistics can be formulated by the method proposed in [4], and 
a multicomponent generalization can be found in [61. A key idea is to introduce the entropy S = In W with 

which plausibly interpolates the boson and fermion cases [2,4]. Note that if we choose gn.e for free fermions and 
bosons, p in (2.3) reduces to the Fermi and Bose distribution functions. . 
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where Z,p is called the dressed charge matrix [14]. By noting the relation 
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(3.3) 

we can formally write down the distribution function in terms of the dressed charge matrix 
as 

(3.4) 

We now evaluate finite-size corrections to the total energy due to the vector potential, 
which are the same as those for twisted boundary conditions [12,131. First, by observing 
that the effect of the static vector potential A is to shift the momentum by the amount 8, 
proportional to A (in units of e), the basic equations should read 

(3.5) 

where 

It should be noted that the vector potential not only shifts the momentum uniformly, but 
can also rearrange in general the distribution of the momentum via interactions between 
particles. For clarity, we indicate rearranged quantities by a tilde. 

Let us compute the corrections to the total energy (3.7). By differentiating equation (3.6) 
with respect to 8, we have 

(3.9) 

by using the conditional equation for the 'Fermi level', &(Q,) = 0. By differentiating 
again, we have 

which can be solved formally by the iteration scheme, resulting in 

(3.10) 
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where the prime in 6; stands for the derivative with respect to k.. In what follows, we 
assume the relation gap(km - 6) = gad$ - ke). Using these results, we have 

(3.11) 

(3.12) 

= 2 t $ ( Q s ) & p + y  (3.13) 
where 2,, = Z,p(Qp) is the dressed charge matrix defined in (3.2). Therefore, we obtain 
the finite size COIIectiOn~AE 2 - E due to the small shift of 8, as 

= ~t'42V2T),t,spsy (3.14) 

where V, = u.8,. and U, is the Fermi velocity defined by U, = 6;(Qn)/pn(Q.). To 
derive the second line, we have used equations (3.4) and (3.13). 

The remaining task is to determine the relation between 8, and A .  The result is quite 
simple (see equation (3.23)), but still non-trivial, which depends on types of external fields. 
Here we briefly depict how to obtain this relation in a rather general way [lS]. For this 
purpose, let us first introduce 

in&) = d k  pdk)  &(kd = / dk F&) (3.15) 

(3.16) 

UP 

k, /+ 
sib G,p(k, - kb) = dk g&(k - kb). 

When A = 0, equation (2.7) is integrated as 

(3.17) 

Note that the first term on the right-hand side is regarded as a bare momentum of the system, 
which can be written as p z  taka. In the presence of the vector potential, the momentum 
is shifted as pf: + pf: - At,. Then equation (3.17) is modified to 

where we denote d, At,. Note that the following calculation can also be applied for 
other types of external fields if we suitably take d, different from At,. Now introduce 
im = %(k,) such that ia(ke) 

p,(k,)dk = Fa(k&&. (3.19) 
By the use of these relations, we can change the integral variables into in (3.18). By 
subtracting both sides of (3.17) from (3.18) and expanding Gap& - E8) up to first order 
in (I; - k), we get 

then we  find idQ,) = Q. f6, and 

(3.20) 
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where Fc is defined by 1151 
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Fa&) = & -km)&&). 

The formal solution to (3.20) is given by 

(3.21) 

(3.22) 

As is stressed above, this formula is valid for arbitrary types of d,. By explicitly substituting 
d, = At,, and comparing (3.21) and (3.22) by the use of (3.4). we get the simple relation 

(3.23) ie - k, = A = 8, 

namely that momentum shifts occur not only for the charge sector but for all indices 01. 

energy increment as 
Consequently, by combining (3.14) and (3.23). we end up with the final formula for the 

AS = c t , ( 2 V 2 T ) a p t p A 2 .  (3.24) 
U 5  

This completes the calculation of finitesize corrections due to the static vector potential. 

4. Ransport coefficients, effective charge and mass 

4.1. Conductivity 

According to equation (3.24) for the response to the external vector potential, we can obtain 
the charge stiffness as 

Dc = t , (2V2T)apfp.  (4.1) 
a5 

An important point is that D, is directly related to the conductivity through the relation 

Reu(w) = e2Dc6(w) at w = 0 (4.2) 

according to the linear response theory [11,12]. 
In much of the literature up to now, correlation effects on D, have been considered to 

modify only the effective transport mass m* [ll-131. However, the transport mass is not 
sufficient to describe the correlation effects on transport properties, because quasiparticles 
such as holons in one dimension can carry not only the effective mass but also the effective 
charge. Therefore, in place of the ordinary interpretation [12,13], we propose the following 
natural expression for the conductivity in terms of the effective charge e' and effective mass 
m*: 

nee'n, 
m* Reu(w) = - S(w) at w = O  (4.3) 

where nE is the density of charged particles. The charge stiffness calculated in (4.1) is then 
related to Dc such that 

e' 
m8 

D, o( -. (4.4) 

So, the charge stiffness (or conductivity) is not sufficient to derive the effective charge and 
mass, and another quantity is necessary to determine them. We will show that the effective 
charge can be derived from the conductance. 
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4.2. Conductance 

It is known that the fractional charge enters in the conductance for the finite system in one 
dimension. Although it is not easy to calculate the conductance without wavefunctions, 
we can compute it by taking into account a universal property of Luttinger liquids, i.e. the 
conductance is determined solely by the correlation exponent for the charge sector. To this 
end, we first define the critical exponent for the charge density correlation function in the 
asymptotic region: 

(p(x)p(o) )  - exp(2ikf)x)~-*~I' (4.5) 

where k f )  = nn, is the 'Fermi momentum' for the charge sector, and is usually given 
by k f )  = MkF in terms of the ordinary Fermi momentum k ~ .  The correlation exponent 
fc is a function of statistical interactions, which is normalized to reproduce fc = 1 for 
non-interacting systems. An important point is that the conductance G ,  can be determined 
by fc universally [16]: 

e' 
h Gc = M- fc. (4.6) 

This formula can be deduced by observing that the conductance is controlled only by the 
charge degrees of freedomt. Renormalizing e by fc such that G, = Mee*/h, we can 
naturally define the effective charge as 

e' =fee. (4.7) 
Therefore the remaining task is to obtain the critical exponent fc in terms of statistical 
interactions. Following a path similar to that in the the last section, we can derive the 
exponent fe through conformal-field-theory analysis of the finite-size spectrum which has 
already been computed in [6]. We~thus obtain the renormalizarion factor for the fractional 
charge 

(4.8) 

in terms of statistical interactions which are implicitly incorporated in the dressed charge 
matrix. By applying the above formulae to (4.4), we can also extract the effective transport 
mass m*, which turns out to be inversely proportional to the velocity U. The expressions 
(4.1), (4.4). (4.7), (4.8) are the main results of this paper. 

One can see that the effective charge is determined solely by the sfafistical interactions, 
whereas the effective mass also depends on non-universal quantities such as the velocity. 
We wish to emphasize that the formula for the fractional charge (4.7) with (4.8) is universal, 
which holds generally for multicomponent Luttinger liquids. 

5. Applications 

5.1. Zdeal fractional exclusion statistics 

One of the most remarkable applications of exclusion statistics is that for the ideal case, in 
which the statistical interaction is given in a simple form [2-61, 

g~~(ku-Icla)=G,B"k.-k~). (5.1) 

t The exponent g without randomness in [I61 corresponds to fe in this paper. 
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This model is known to have a close relationship to interesting quantum systems such as 
the FQHE, l/rZ systems, etc. 

If we take a bare dispersion as ez(k) = co(k)z, with 6(k) = k2/2,  the ground-state 
configuration is QI = Qz = . .. = QM = Q, and the distribution functions are obtained as 

P. = G$tg. (5.2) 

T Fukui and N Kawakami 

B 
The number of charged particles is 

(5.3) 

where the quantity U is related to the compressibility as K~ = 4vZ/n,,  which is a one- 
dimensional analogue of the filling factor in the FQHE. In the present model, the Fermi 
velocities for each excitation take the same values 

(5.4) 

As shown in the appendix, one finds a simple relation between the dressed charge and the 
statistical interaction, namely 

nc 
2v 

V , = Q = . ' ' =  UM v = -_ 

22' = G-' .  (5.5) 
Consequently, the renormalization factor (4.8) for the fractional charge e'/e = fc is 
expressed as 

It should be noted that the fractional charge is now explicitly obtained only in terms of the 
statistical parameters Gap for exclusion statistics. Since the charge stiffness is given by 
Dc = n,/2,  the enhancement factor for the transport mass in this case is derived as 

m*/m = fc (5.7) 
from which one can see that the enhancement of m* exactly cancels the renormalization of 
charge e*, in accordance with the translational symmetry. 

Let us now discuss more concrete models for ideal exclusion statistics. For an instructive 
example, we consider the statistical-interaction matrix G in a hierarchical basis, which is 
derived from the continuum l/r2 model [17] with SU(M) symmetry [18,19]. This model 
is also related to a fundamental series for the hierarchical FQHE [8,20,21]. The M x M 
matrix for statistical interactions in this case reads 

G =  

2n+1 -1 0 
-1 2 -1 0 

0 -1 2 -1 
0 -1 2 

From (5.3) we have 
P 

1 2Mn+1 q 
1 

2 - -  
. 1  

2 

= -  - M - 1 
v =  

2 n f 1 -  

. -  

(5.9) 
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which.corresponds to the filling factor in the case of the FQHE. Observing this, we see that 
the matrix G in this model plays a role similar to the flux attachment in Jain's model for 
the FQHE [22]: 

XMX? (5.10) 

where xM is the IQH state with the filling factor M, which is attached by 2n flux quanta 
xp. In fact, one can find the same matrix as (5.8) in the classification scheme in the 
corresponding Abelian Chern-Simons theory for the FQHE [8,9,20,211. Therefore it can be 
seen that the W ( M )  l / rZ  model bean a close relationship to the hierarchical FQHE with 
U = M/(2Mn + 1). 

According to equations (5.6) and (5.7), it tnms out that the effective charge and mass 
are given by taking tT = (1.0, . . . , 0) 

e - _  e e* = - 
2 M n + l  q 

m m 
2 M n + l  q 

mx = = 

(5.11) 

(5.12) 

Note that the expression for the effective charge (5.1 1) is actually in accordance with that for 
the FQHE. In particular, for the one-component case G = g, we have e*/e = m'/m = I/g. 
Note that for free systems, i.e. n = 0, we have e'/e = m*/m = 1. 

5.2. Correlated electron systems 

It is also instructive to apply the results to onedimensional correlated electron systems. In 
order to fully describe interacting electron systems in the whole energy range, it is necessary 
to consider statistical interactions that depend on the momentum in a complicated way [23]. 
However, if we restrict ourselves to the low-energy conformal limit, we can still use the idea 
of ideal exclusion statistics. In  such a low-energy region, the critical behaviour is described 
by the Luttinger liquid theory, in other words, by c = 1 conformal field theory. In this case, 
we can introduce the 2 x 2 manix Gap for the ideal statistics in (5.1) in terms of Luttinger 
liquid parameters. Since this model has two kinds of elementary excitations, i.e. spinon and 
holon, which have two different velocities, U, and uc, we can choose the hierarchical basis 
as a natural one. By analysing exactly solved models or Tomonaga-Luttinger models, the 
matrix for statistical interaction can be deduced as [6] 

(5.13) 

where K p  = 2 , : /2  is the critical exponent for the 4 k ~  oscillation piece in the density 
correlation function. Note that G I ]  is related to the charge degrees of freedom, Gz to the 
spin degrees of freedom, and the off-.diagonal elements are regarded as mutual statistics. It 
is to be emphasized here that equation (5.13) is the universal formula for correlated electron 
systems. 

According to (4.7), the effective charge is given by substituting tT = (1,O) 

e*/e = KO (5.14) 

which reproduces the known results for the conduqtance in Luttinger liquids [16]. Also, 
from (4.1), the charge stiffness is found to be 

0; = 2v,K,  (5.15) 
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from which we obtain the effective mass using (4.4) as 
m'/m = up/vC. (5.16) 

where u p  is the Fermi velocity for non-interacting electrons. 
For exactly solvable electron models such as the Hubbard model and the supersymmetric 

t-J model, the critical exponent K, and the velocity of holons were calculated exactly 
as functions of the interaction and the electron density [24-261. So, we can discuss the 
effective charge and mass for these models. As for the Hubbard model, K, decreases from 
1 to as the Coulomb interaction is increased [26], hence the effective charge decreases 
with the increase of the interaction, as stressed by Ogata and Fukuyama [16]. Near half 
filling, the effective charge always takes e/2 as far as the Coulomb interaction exists. In 
the case of the supersymmetric t-J model 124,251, the effective charge is e / 2  near half 
filling, but as the electron density decreases, it continuously increases and reaches the non- 
interacting value e* = e in the low density limit. Also, we can discuss the effective mass 
for electron systems. The results are essentially the same as those discussed previously [13]: 
the effective mass has a divergence property near half filling both for the Hubbard model 
and the supersymmetric t-J model, reflecting the metal-insulator transition. 

6. Summary and discussions 

In summary, we have obtained the transport coefficients, effective charge and effective mass 
for multicomponent quantum systems obeying fractional exclusion statistics. Their explicit 
relation to the statistical interaction has been derived in equations (4.1)-(4.8) for general 
systems obeying (2.1). We have applied the results for the cases with ideal statistics as well 
as for the conformal limit of electron systems. It has also been pointed out that the statistical 
interaction derived from S U ( N )  l/rZ models is closely related to Jain's construction (or 
the corresponding ChemSimons theory) for the hierarchical FQE.  

It is instructive to note that the effective charge in the ideal case is expressed in an 
extremely simple form (5.6) or (5.11) in terms of the statistical interaction Gap, implying 
that the fractional charge in the ideal case directly reflects the fractional statistics. In 
fact, we find an alternative way of deriving (5.11) using only the definition of fractional 
exclusion statistics. We briefly summarize how to get them intuitively. In the ideal case, 
the definition (2.1) reads 

(6.1) 

Now imagine the ground-state configuration and make a hole to excite the system. The 
above equation implies that if we make a @-hole, the number of ~~-particIes decreases by an 
amount G;; . Then, how many charged particles decrease in all? The answer is E, t,G;j. 
Now make a hole at a sector a, i.e. tT = (0, . . . , LO, . . . ,O) in the hierarchical basis. 
This corresponds to tT = (0, . . . , 1, 1,. . . , 1) in the symmetric basis, which may create 
M + 1 - CY holes of electrons. Therefore, making a hole with unit charge corresponds to 
removing particles with the charge 

which in turn defines the effective charge of the excitation. If we adopt G in (5.8), then we 
have 

e:/e = 1 f q  (6.3) 
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where q is defined in (5.9). This result coincides with (5.11). 
Finally, another remark is in order. In section 3, we have defined the effective charge 

(4.7) apart from the trivial degeneracy M .  However, it may be possible to include such a 
factor in the definition of the charge. In this definition, equations (5.6),(5.11),(5.12) are 
modified by the factor M ,  and equation (6.2) should be replaced by 

2 ' : = e C G $  (6.4) 
B 

and therefore, equation (6.3) is modified as 

;:/e = ( M  + 1 - a)/q (6.5) 
i.e. explicitly, p / q .  ( p - l ) / q ,  . . . , l/q. This definition for the fractional charge corresponds 
to that used in [8,9]. ~. 
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Appendix 

In the case of ideal exclusion statistics, there exists a simpler way of deriving equation (5.5) 
without calculating the dressed charge (3.2). We briefly depict this convenient method 
below. Consider the present system without external fields. Then there are two kinds of 
elementaty excitation, i.e. excitation which changes the number of particles, and that which 
carries the large momentum. Following the techniques of the dressed charge matrix [14], 
the excitation spechum was explicitly evaluated in 161 as 

A& = (v/4)nT(22')-'n + vdT(2ZT)d 
where the vectors n and d denote the quantum numbers for excitations, labelling the change 
of particle number i d  the momentum transfer, respectively. Note that the excitation which 
we seek in (3.24) corresponds to the excitation specified by d. From the above formula, 
one can see that these two kinds of excitations are related to each other reflecting modular 
invariance. So, we can easily deduce the excitations for the d-sector once we can calculate 
those for the n-sector. The calculation for the latter excitation is much simpler than the 
former. Let us then calculate the latter by changing Qa -+ Q, + AQ,. Then both n, and 
AE are given by functions of AQa,  and a simple calculation gives AE as a function of n. 
such that AE = (v/4)nTGn. Comparing these results, we end up with equation (5.6). 
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